

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY

SAULT STE. MARIE, ONTARIO

CICE COURSE OUTLINE

COURSE TITLE:

Introduction to Programming

CODE NO. :
MODIFIED CODE:

CSD102
CSD0102

SEMESTER: Winter

PROGRAM:

All Information Technology Programs

AUTHOR:
MODIFIED BY:

Dennis Ochoski
Anthea Fazi, Learning Specialist CICE Program

DATE:

Jan/2016 PREVIOUS OUTLINE DATED: 2015

APPROVED: “Angelique Lemay” Jan/2016

DEAN

DATE

TOTAL CREDITS:

5

PREREQUISITE(S):

none

HOURS/WEEK:

5

Copyright © 2016The Sault College of Applied Arts & Technology

Reproduction of this document by any means, in whole or in part, without prior

written permission of Sault College of Applied Arts & Technology is prohibited.

For additional information, please contact the Dean, School of Community

Services Interdisciplinary Studies, Curriculum & Faculty Enrichment

(705) 759-2554, Ext. 2737

Introduction to Programming CSD0102

2

COURSE DESCRIPTION:

The primary focus of this programming course is to develop the student's logical
problem-solving skills. At the same time, the CICE student, with assistance from
a Learning Specialist, will acquire a basic knowledge of the constructs inherent in
all programming languages. To understand the program development process,
the following concepts will be discussed: structured programming techniques,
pseudocode/flowcharting, algorithm development, syntax, data types/variables,
debugging, documentation, conditions, looping, user-defined functions, arrays,
pointers, structures, file handling and an introduction to OOP using classes.
Problem-solving skills are developed through programming assignments of
increasing complexity.

II. TOPICS TO BE COVERED:

1. C/C++ program structures and format.

2. Decisions/Conditions in C/C++.

3. Repetition/Looping in C/C++.

 4. Modularization using User-Defined Functions.

5. Advanced Concepts with User-Defined Functions.

6. Pointers.

 7. The Debugger.

8. Arrays/Tables.

9. Advanced Concepts with Characters and Strings.

10. Data Structures.

11. Files.

12. Classes

III. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE:

Introduction to Programming CSD0102

3

Upon successful completion of this course, the CICE student, with the help of a
Learning Specialist, will demonstrate the basic ability to

1. Discuss and apply the concepts involved in the development of a program to

solve problems using the computer and write simple C/C++ programs
applying the concepts of input/output, arithmetic, and assignment.

 References at cplusplus.com:
 Basics of C++: Structure of a program
 Variables. Data Types.
 Constants
 Operators
 Basic Input/Output

This learning outcome will comprise 10% of the course.

Elements of the performance:

• demonstrate an understanding of the Microsoft Visual C++ environment
• explain the main components of a C/C++ program
• name and distinguish C/C++ basic data types
• explain and properly use the naming conventions for C/C++ identifiers
• differentiate between character, string, and numeric constants
• differentiate between character and numeric variables
• declare and initialize variables correctly
• use assignment operators (=, +=, -=, *=, /=) to assign values/expressions

to variables
• use increment/decrement operators (++, --) to increase/decrease values

by 1
• use arithmetic operators and apply their precedence (+, -, *, /, %)
• evaluate integer and mixed-mode arithmetic correctly
• use various C++ math library functions to perform arithmetic calculations
• explain automatic promotion and apply typecasting to define data types
• describe the purpose of a compiler/interpreter
• describe the process of transforming a source program to an executable

module
• differentiate between syntax and logic errors
• apply the cin object to perform input of data
• apply the cout object to perform output of data
• apply the cin.getline() function to accept string values that include a

space(s)
• apply the setw(), setprecision(), and setf() manipulators to format
• explain and apply the #include directive
• explain the purpose of "include" files for the cin and cout objects
• write algorithms to solve problems using pseudocode
• write, test, and debug programs using the concepts above

http://www.cplusplus.com/doc/tutorial/program_structure/
http://www.cplusplus.com/doc/tutorial/variables/
http://www.cplusplus.com/doc/tutorial/constants/
http://www.cplusplus.com/doc/tutorial/operators/
http://www.cplusplus.com/doc/tutorial/basic_io/

Introduction to Programming CSD0102

4

2. Develop algorithms and write C/C++ programs to solve problems involving

the standard computer operations of decisions/conditions and selection.

 References at cplusplus.com:

 Control Structures: Control Structures (conditions)

This learning outcome will comprise 10% of the course.

Elements of the performance:

 • describe and use the relational operators (==, !=, <, <=, >, >=)
 • describe the use of the logical operators (&&, ||) and use them to write

both
 simple and complex expressions

• describe the operation of the following C/C++ decision-making structures
and use them in C/C++ programs:

 i. if...else
 ii. nested ifs
 iii. if...else if...else
 iv. the switch statement

• write algorithms to solve problems containing decision-making structures,

and describe them using pseudocode
• write, test, and debug programs containing decision structures

3. Develop algorithms and write C/C++ programs to solve problems involving

the standard computer operations of looping and repetition, and, debug
program logic errors using the C++ Debugger.

 References at cplusplus.com:

 Control Structures: Control Structures (loops)

This learning outcome will comprise 10% of the course.

Elements of the performance:

• discuss the concept of repetition/looping in computer programs
• describe the operation of the following C/C++ repetition structures and

use them in
 C/C++ programs:

 i. while ii. do...while
 iii. for iv. nested loops

http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/

Introduction to Programming CSD0102

5

Elements of the performance(cont’d):

• use break, continue, and exit to terminate the iteration of a loop
• write algorithms to solve problems containing repetition structures, and

describe them using pseudocode
• describe and correct an "infinite loop" problem
• execute code one line at a time using the Step Debugger
• use the following stepping options: Go, Step Into, Step Over, Step Out,

Watch, and Run to Cursor
• define, as well as, insert and remove break
• write, test, and debug programs containing repetition structures

4. Discuss and create user-written, independently-compiled functions.

 References at cplusplus.com:

 Control Structures: Functions (I)
Functions (II)
Pointers

This learning outcome will comprise 20% of the course.

Elements of the performance:

• distinguish between local and global variables

 • discuss and apply the concepts of ‘passing’ arguments to called functions
by value

 • discuss and apply the concept of ‘returning’ values to calling functions
 • write, test, and debug programs containing functions

• discuss and apply the concept of pointers and pointer arithmetic
• discuss and apply the concept of pointers in C/C++
• define and apply the concepts of the following terms:

scope calling vs called functions function

prototypes
local vs global variables pass by value return

statement
 class pass by reference overloaded
functions

auto vs static variables arguments/parameters

• develop modularized, structured programs by creating user-written

functions
• discuss and apply the concepts of ‘passing’ arguments to called functions

by value
• discuss and apply the concept of ‘returning’ values to calling functions

http://www.cplusplus.com/doc/tutorial/functions/
http://www.cplusplus.com/doc/tutorial/functions2/
http://www.cplusplus.com/doc/tutorial/pointers/

Introduction to Programming CSD0102

6

• discuss and apply the concepts of ‘passing’ arguments to called functions
by reference

• develop modularized, structured programs by creating user-written
functions

5. Develop algorithms and write C++ programs to solve problems involving
 tables/arrays.

 References at cplusplus.com:

 Compound Data Types: Arrays

This learning outcome will comprise approximately 15% of the course.

Elements of the performance:

• define and apply the concepts of the following terms:

one-dimensional array index value subscript
two-dimensional array null character

• discuss the purpose and concepts relating to one- and two-dimensional

arrays
• declare and initialize both numeric and character arrays
Elements of the performance(cont’d):

• apply the concept of pointers to arrays
• access and process array elements
• pass arrays between functions
• write, test, and debug programs containing arrays

6. Discuss and apply the concepts of character sequences/arrays and string
manipulation with reference to C/C++ library functions.

 References at cplusplus.com:

 Compound Data Types: Character Sequences

This learning outcome will comprise approximately 10% of the course.

Elements of the performance:

• understand and utilize the C++ string class and its associated functions to

declare string variables and manipulate string values
 discuss and apply character-based functions such as:

 cin.get() tolower() toupper() isalpha()

http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/

Introduction to Programming CSD0102

7

 isdigit() isalnum() islower() isupper()

Elements of the performance(cont’d):

 discuss and apply string functions such as:

str.append() str.compare() str.length() str.copy()

• write, test, and debug programs containing character and string functions

7. Develop algorithms to solve problems involving the use of data structures.

 References at cplusplus.com:

 Compound Data Types: Data Structures

This learning outcome will comprise approximately 10% of the course.

Elements of the performance:

• define and apply the concepts of the following terms:

structure member record internal pointer

• discuss the concept of structures in C/C++
• declare and initialise a structure
• access and process structure members
• apply the use of arrays of structures
• apply methods of passing and returning structures to and from functions
• write, test, and debug programs containing structures

8. Develop algorithms to solve problems involving the use of file manipulation.

 References at cplusplus.com:

 C++ Standard Library: Input/Output with fi...

This learning outcome will comprise approximately 5% of the course.

Elements of the performance:

• define and apply the concepts of the following terms:

file open read close write append

• create a disk file
• write data to, and, read data from a disk file
• perform disk I/O with records

http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/files/

Introduction to Programming CSD0102

8

• create, and manipulate sequential and random access files
• write, test, and debug programs containing files

9. Introduce the concept of object-oriented programming using classes
and objects by comparing with structures.

References at cplusplus.com:
Classes: Classes I
 Classes II

This learning outcome will comprise approximately 10% of the
course.

 Potential Elements of the Performance:

 Identify the most important features of Object-oriented
programming languages.

 Assess the strengths and weaknesses of OOP and procedural
programming.

 Define classes and implement class members and member
functions.

 Compare classes to structures.

 Explain the relationship between class and object declarations.

 Develop and manipulate an array of classes.

 Use classes as parameters in function calls.

 Declare and define constructors and destructors for classes.

 Implement operator overloading.

 Use pointers to point to a class object

 Explain the use of inheritance in C++ programs.

 Derive new classes from base/parent classes.

 Write and debug programs utilizing the components above.

IV. REQUIRED RESOURCES/TEXTS/MATERIALS

 Internet Link:
 http://www.cplusplus.com/doc/tutorial/introduction/

http://www.cplusplus.com/doc/tutorial/classes/
http://www.cplusplus.com/doc/tutorial/classes/
http://www.cplusplus.com/doc/tutorial/templates/
http://www.cplusplus.com/doc/tutorial/introduction/

Introduction to Programming CSD0102

9

V. EVALUATION PROCESS/GRADING SYSTEM:

Evaluation Methods Weight

Tests 60%
Assignments 40%

 100%

 The following semester grades will be assigned to students in
postsecondary courses:

Grade

Definition

Grade Point
Equivalent

 A+ 90 – 100% 4.00
 A 80 - 89% 4.00
 B 70 - 79% 3.00
 C 60 - 69% 2.00
 D 50 – 59% 1.00

 F(Fail) below 50% 0.00

CR (Credit)

Credit for diploma requirements has been
awarded.

 S Satisfactory achievement in field/clinical
placement or non-graded subject area.

 U Unsatisfactory achievement in
field/clinical placement or non-graded
subject area.

 X A temporary grade limited to situations
with extenuating circumstances giving a
student additional time to complete the
requirements for a course.

 NR Grade not reported to Registrar's office.
 W Student has withdrawn from the course

without academic penalty.

If a faculty member determines that a

student is at risk of not being successful

in their academic pursuits and has

exhausted all strategies available to

faculty, student contact information may

be confidentially provided to Student

Services in an effort to offer even more

assistance with options for success. Any

Introduction to Programming CSD0102

10

student wishing to restrict the sharing of

such information should make their

wishes known to the coordinator or

faculty member.

VI. OTHER EVALUATION CONSIDERATIONS

1. In order to pass this course the student must obtain an overall
 test/quiz average of 50% or better, as well as, an overall
 assignment average of 50% or better. A student who is not present
 to write a particular test/quiz, and does not notify the professor
 beforehand of their intended absence, may be subject to a zero
 grade on that test/quiz.

2. There will be no supplemental or make-up quizzes/tests in this
 course unless there are extenuating circumstances.

3. Assignments must be submitted by the due date according to the

specifications of the professor. Late assignments will normally be
given a mark of zero. Late assignments will only be marked at the
discretion of the professor in cases where there were extenuating
circumstances.

4. Any assignment/projects submissions, deemed to be copied, will
 result in a zero grade being assigned to all students involved in
 that particular incident.

5. It is the responsibility of the student to ask the professor to clarify

any assignment requirements.

6. The professor reserves the right to modify the assessment process
 to meet any changing needs of the class.

All tests and assignments will be completed with the assistance of the Learning
Specialist. Any modifications to the tests and assignments will be proposed by
the Learning Specialist and are subject to approval from the professor

VII. SPECIAL NOTES:

Introduction to Programming CSD0102

11

Attendance:
Sault College is committed to student success. There is a direct correlation
between academic performance and class attendance; therefore, for the benefit
of all its constituents, all students are encouraged to attend all of their scheduled
learning and evaluation sessions. This implies arriving on time and remaining for
the duration of the scheduled session. It is the departmental policy that once the
classroom door has been closed, the learning process has begun. Late arrivers
may not be granted admission to the room.

Absences due to medical or other unavoidable circumstances should be
discussed with the professor, otherwise a penalty may be assessed. The penalty
depends on course hours and will be applied as follows:

Course Hours Deduction

5 hrs/week (75 hrs) 1.0% /hr

4 hrs/week (60 hrs) 1.5% /hr

3 hrs/week (45 hrs) 2.0% /hr

2 hrs/week (30 hrs) 3.0% /hr

Final penalties will be reviewed and assessed at the discretion of the professor.

Addendum:

Further modifications may be required as needed as the semester progresses
based on individual student(s) abilities and must be discussed with and agreed
upon by the instructor.

VIII. COURSE OUTLINE ADDENDUM:

 The provisions contained in the addendum located in D2L and on the

portal form part of this course outline.

Introduction to Programming CSD0102

12

CICE Modifications:
Preparation and Participation

1. A Learning Specialist will attend class with the student(s) to assist with inclusion in the

class and to take notes.
2. Students will receive support in and outside of the classroom (i.e. tutoring, assistance

with homework and assignments, preparation for exams, tests and quizzes.)
3. Study notes will be geared to test content and style which will match with modified

learning outcomes.
4. Although the Learning Specialist may not attend all classes with the student(s), support

will always be available. When the Learning Specialist does attend classes he/she will
remain as inconspicuous as possible.

A. Tests may be modified in the following ways:

1. Tests, which require essay answers, may be modified to short answers.
2. Short answer questions may be changed to multiple choice or the question may be

simplified so the answer will reflect a basic understanding.
3. Tests, which use fill in the blank format, may be modified to include a few choices for

each question, or a list of choices for all questions. This will allow the student to match or
use visual clues.

4. Tests in the T/F or multiple choice format may be modified by rewording or clarifying
statements into layman’s or simplified terms. Multiple choice questions may have a
reduced number of choices.

B. Tests will be written in CICE office with assistance from a Learning Specialist.

 The Learning Specialist may:

1. Read the test question to the student.
2. Paraphrase the test question without revealing any key words or definitions.
3. Transcribe the student’s verbal answer.
4. Test length may be reduced and time allowed to complete test may be increased.

C. Assignments may be modified in the following ways:

1. Assignments may be modified by reducing the amount of information required while
maintaining general concepts.

2. Some assignments may be eliminated depending on the number of assignments required
in the particular course.

The Learning Specialist may:

1. Use a question/answer format instead of essay/research format
2. Propose a reduction in the number of references required for an assignment
3. Assist with groups to ensure that student comprehends his/her role within the group
4. Require an extension on due dates due to the fact that some students may require

additional time to process information
5. Formally summarize articles and assigned readings to isolate main points for the student
6. Use questioning techniques and paraphrasing to assist in student comprehension of an

assignment

D. Evaluation:

Introduction to Programming CSD0102

13

Is reflective of modified learning outcomes.

